Reaction between nitrogen–containing heterocycles and dialkyl acetylenedicarboxylate with strong CH-acid: synthesis of stable highly functionalised 1,4-diionic nitrogen betaines Ahmad Shaabania,∗**, Ayoob Bazgira, Farahnaz Tavasoli-Rada, Hamid Reza Bijanzadehb and**

Freidoon Razmaraa

aChemistry Department, Shahid Beheshti University, Zip Code 1983963113, Tehran, Iran b Department of Chemistry, Tarbiat Modarres University, PO Box 14155-4838, Tehran, Iran

Protonation of highly reactive 1,4-zwitterionic intermediate generated in the reaction between pyridine or isoquinoline and dialkyl acetylenedicarboxylates by strong CH-acid such as 1,1,1,5,5,5-hexafluoropentane-2,4-dione, leads to a vinyl pyridinium cation derivatives, which undergo carbon centred Michael type addition with the conjugate base of the CH-acid to produce highly functionalised stable 1,4-diionic nitrogen betaines.

Keywords: 1,1,1,5,5,5-hexafluoropentane-2,4-dione, pyridine; CH-acid, isoquinoline, zwitterionic intermediate, 1,4-diionic nitrogen betaines

The pronounced reactivity of nitrogen–containing heterocycles towards electron-deficient acetylenic compounds such as dimethyl acetylenedicarboxylate (DMAD) is well documented.1 The reaction generally involves the initial addition of pyridine to DMAD to form the 1,4-zwitterionic intermediate, which undergoes further reaction with DMAD leading to quinazoline derivatives or it can be trapped by various electrophiles.²⁻⁸ Also the reactions of pyridine and DMAD have been studied in the presence of a CH-acid such as dimethyl malonate and ethyl cyanoacetate. In the case of dimethyl malonate the malonate cyclohepta-1,3-diene derivatives were obtained,⁹ however the reaction of DMAD with ethyl cyanoacetate in the presence of pyridine took a different course.¹⁰

In a continuation of our previous work on the chemistry of $1,1,1,5,5,5$ -hexafluoropentane-2,4-dione, 1^{11-13} with the purpose of preparing 1,4-diionic nitrogen betaines bearing trifluoromethyl substituent, we performed the reaction of pyridine or isoquinoline and dialkyl acetylenedicarboxylates in the presence of 1,1,1,5,5,5-hexafluoropentane-2,4-dione.

Results and discussion

A mixture of pyridine or isoquinoline **(1)** and dialkyl acetylenedicarboxylates **(2)** when treated with 1,1,1,5,5,5 hexafluoropentane-2,4-dione **(3)** at room temperature in diethyl ether for 10 hours affords the 1,4-diionic nitrogen betaines **(4)** in 69–81 % yields. (Scheme 1) Compounds **4a–4d** are stable solids whose structures are fully supported by IR, high-field ${}^{1}H$, ${}^{13}C$ and ${}^{19}F$ NMR spectroscopy and mass spectrometric data. The mass spectra of these 1:1:1 adducts exhibited fairly weak molecular ion peaks.

On the basis of the well established chemistry of nitrogen heterocycle nucleophiles, 14 it is reasonable to assume that betaines **4** result from the initial addition of pyridine or isoquinoline to the electron deficient acetylenic ester and subsequent protonation of the 1:1 adduct by $1,1,1,5,5,5$ hexafluoropentane-2,4-dione. Then, the vinyl pyridinium cation **5** is attacked by the enolate anion of the CH-acid to generate the nitrogen ylide **6**, which isomerises under the reaction conditions to produce the 1,4-diionic compounds **4** (Scheme 2).

The 500 MHz 1H NMR spectra of compound **4a** displayed signals for vicinal methine protons at δ 4.48 and 6.38 which appear as two sets of doublets with $3J_{HH}$ values of 7.90 Hz and 7.92, respectively. The two trifluoromethyl groups are homotopic and show a signal in the ¹⁹F and ¹³C NMR spectra.

 $\mathsf{CO_2R}$

H

Also compound **4** has two stereogenic centers, and therefore two diastereomers are expected (Scheme 3). The 1H NMR spectra of the crude reaction mixtures obtained from **4a–4d** were consistent with the presence of only one diastereomer.

In conclusion, we have found that the reaction of pyridine or isoquinoline with electron deficient dialkyl acetylenedicarboxylates in the presence of a strong CH-acid such as 1,1,1,5,5,5-hexafluoropentane-2,4-dione leads to a facile synthesis of the highly functionalized 1,4-diionic nitrogen betaines **4a–4d** in fairly good yields. The present method carries the advantage that the reaction is performed under mild conditions and the substrates can be mixed without any activations and modifications.

^{*} Correspondence. E-mail: a-shaabani@cc.sbu.ac.ir

Experimental

All melting points are uncorrected. Mass spectra were recorded on a FINNIGAN-MAT 8430 mass spectrometer operating at an ionization potential of 70 eV. IR spectra were recorded on a Shimadzu IR-470 spectrometer. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a BRUKER DRX-500 AVANCE spectrometer at 500.13, 125.77 and 470.56 MHz in DMSO- d_6 or acetone- d_6 using TMS or CFCl₃ as internal standard. The chemicals used in this work were purchased from Aldrich chemical company.

Typical procedure for the preparation of dimethyl 2-(1,1,1,5,5,5 hexafluoro-2,4-dioxo-pentane-3-yl-3-yide)-3-pyridinium-1,4 butanedioate (**4a**): To a magnetically stirred solution of 1,1,1,5,5,5 -hexafluoropentane-2,4-dione (0.43 g, 2 mmol) and dimethyl acetylenedicarboxylate (0.28 g, 2 mmol) in diethyl ether (10 ml) was added dropwise a mixture of pyridine (0.16 g, 2 mmol) in diethyl ether (5 ml) at room temperature (25 \degree C). After 10 h the precipitate was filtered and washed with cold diethyl ether (10 ml) and ethyl acetate (5 ml), to yield **4a** as a white powder (0.59 g, yield 69%). m.p. 159–160 °C. ν_{max}/cm⁻¹ (KBr): 1735, 1625, 1529, 1492. ¹H NMR (DMSO-d₆): δ_H 3.57 and 3.77 (6H, 2s, 2OCH₃), 4.48 (1H, d, ³J_{HH} 7.90 Hz, CH), $\overline{6.38}$ (1H, d, 3 J_{HH} 7.92 Hz, CH-N⁺), 8.09 (2H, m, H-3,5) of py), 8.63 (1H, t, $3J_{HH}$ 7.76 Hz, H-4 of py), 8.76 (1H, d, , $3J_{HH}$ 5.91 Hz, H-2,6 of py); ¹³C NMR (DMSO-d₆): $\overline{46.42}$ (CH), 52.47 and 53.81 $(2OCH_3)$, 69.46 (CH-N⁺), 95.15 [C(CO₂], 117.83 (q, ¹J_{CF} 289.25 Hz, 2CF3), 127.36, 145.69 and 147.19 (py), 167.47 and 171.58 (2CO₂Me), 172.73 (m, 2COCF₃); ¹⁹F NMR (DMSO-d₆): δ_F –70.81 $(2CF_3)$; MS (m/z, %) 411 (M⁺-H₂O, 5), 351 (M⁺-py, 7), 291 (22), 249 (51), 163 (28),79 (93), 59 (100).

Selected data for **4b:** White powder (0.66 g, yield 72%). m.p. 142–144 °C. ν_{max}/cm⁻¹ (KBr): 1737, 1636, 1523, 1457. ¹H NMR (DMSO-d₆): δ_H 1.07 (3H, t, ³*J*_{HH} 7.02 Hz, CH₃), 1.20 (3H, t, ³*J*_{HH} 7.04 Hz, CH₃), 4.01–4.27 (4H, m, OCH₂), 4.48 (1H, d, ³*J*_{HH} 8.02 Hz, CH), 6.35 (1H, d, ${}^{3}J_{\text{HH}}$ 8.01 Hz, CH-N⁺), 8.10 (2H, m, H-3,5 of py), 8.63 (1H, t, ³*J*_{HH} 7.68 Hz, H-4 of py), 8.75 (1H, d, ³*J*_{HH} 5.99 Hz, H-2,6 of py); ¹³C NMR (DMSO-d₆): 13.61 and 13.78 (2CH₃), 46.64 (CH), 60.91 and 62.91 (2OCH2), 69.68 (CH-N+), 95.31 [*C*(CO)2], 117.84 (q, ¹J_{CF} 288.75 Hz, 2CF₃), 127.39, 145.58 and 147.12 (py), 166.96 and 170.92 (2*C*O₂Et), 172.64 (m, 2*C*OCF₃); ¹⁹F NMR (DMSO-d₆): ^δ^F –70.86 (2CF3)*.* MS (*m/z*, %) 377 (M+-py, 5), 333 (15), 305 (19), 287 (20), 235 (100), 163 (48), 79 (76), 52 (78).

Selected data for **4c:** Yellow powder (0.78 g, yield 81%). m.p. 150–151 °C. ν_{max}/cm⁻¹ (KBr): 1732, 1638, 1520, 1456. ¹H NMR (acetone- d_6): δ_H 3.63 and 3.86 (6H, 2s, 2OCH₃), 4.78 (1H, d, ³J_{HH} 8.01 Hz, CH), 6.51 (1H, d, ³*J*_{HH} 8.01 Hz, CH-N⁺), 8.11–8.61 (1H, m, Ar). ¹³C NMR (acetone- d_6): 46.96 (CH), 51.37 and 52.80 (2OCH₃), 69.83 (CH-N⁺), 95.04 [*C*(CO)2], 117.32 (q, ¹J_{CF} 287.13 Hz, 2CF₃), 124.66, 126.61, 126.81, 130.48, 131.01, 134.55, 137.49, 137.62 and 150.49 (Ar), 167.39 and 171.65 (2CO₂Me), 172.52 (m, 2COCF₃). ¹⁹F NMR (acetone-*d*₆): δ_F –72.31. MS (*m*/z, %) 480 (M⁺+1, 8), 449 (6), 387 (10), 287 (35), 249 (69), 129 (100), 59 (96).

Selected data for **4d:** Yellow powder (0.80 g, yield .79%). m.p. 146–147 °C. ν_{max}/cm⁻¹ (KBr): 1744, 1713, 1625, 1562. ¹H NMR $(\text{acetone-}d_6)$: δ_{H} 1.15 (3H, t, ³*J*_{HH} 7.02 Hz, CH₃), 1.28 (3H, t, ³*J*_{HH} 7.12 Hz, CH₃), 4.06–4.39 (4H, m, OCH₂), 4.78 (1H, d, ³J_{HH} 8.15 Hz, CH), 6.48 (1H, d, ³*J*_{HH} 8.15 Hz, CH-N⁺), 8.11–8.61 (7H, m, Ar). ¹³C NMR (acetone- d_6): 13.78 and 13.96 (2CH₃), 48.18 (CH), 61.48 and 63.51 (2OCH₂), 71.15 (CH-N⁺), 96.36 [*C*(CO)2], 118.78 (q, ¹J_{CF} 288.63 Hz, 2CF3), 125.74, 127.68, 127.89, 131.53, 132.01, 135.50, 138.53, 138.66 and 151.55 (Ar), 167.96 and 172.01 (2CO₂Et), 173.97 and 174.21 (2m, COCF₃). ¹⁹F NMR (acetone- d_6): δ_F –72.35. MS (m/z , %) 508 (M⁺+1, 7), 379 (26), 333 (21), 287 (27), 129 (100), 69 (35).

We gratefully acknowledge financial support from the Research Council of the University of Shahid Beheshti in Iran.

Received 2 December 2003; accepted 14 January 2004 paper 03/2233

References

- 1 (a) J.I. Dikstein and S.I. Miller, *The Chemistry of Functional Groups. The Chemistry of Carbon-Carbon Triple Bond*, Part 2, Chapter 19; Patai. S., Ed.; Wiley; Chichester, 1978, p. 813; (b) E. Winterfeldt, *Angew. Chem., Int. Ed. Engl*., 1967, **6**, 423.
- 2 R.M. Acheson and N.F. Elmore, *Advances in Heterocyclic Chemistry*, 1978, **23**, 263 and references cited therin.
- 3 R.M. Acheson and J. Woollard, *J. Chem. Soc.,* 1971, 3296.
- 4 R.M. Acheson and G.A. Taylor, *J. Chem. Soc*., 1960, 1691.
- 5 R.M. Acheson and J. Woollard, *J. Chem. Soc. Perkin Trans. I*, 1975, 438.
- 6 R.M. Acheson and A.O. Plunkett, *J. Chem. Soc*., 1964, 2676.
- 7 A. Crabtree, A.W. Johnson and J.C. Tebby, *J. Chem. Soc*., 1961, 3497.
- 8 R. Huisgen, M. Morikawa, K. Herbig and E. Brunn, *Chem. Ber*., 1967, **100**, 1094.
- 9 E. LeGoff and R.B. LaCount, *J. Org. Chem*., 1964, **29**, 423.
- 10 P. Bamfield, A. Crabtree and A.W. Johnson, *J. Chem. Soc.,* 1965, 4355.
- 11 A. Shaabani, M.B. Teimouri, I. Yavari, H. Norouzi Arasi and H.R. Bijanzadeh, *J. Fluor. Chem*., 2000, **103**, 155.
- 12 A. Shaabani, A. Bazgir, K. Soleimani and H.R. Bijanzadeh, *J. Fluor. Chem.,* 2000, **116**, 93.
- 13 I. Yavari, A. Shaabani, S. Asghari, M.M. Olmstead and N. Safari, *J. Fluor. Chem.,* 1997, **86**, 77.
- 14 I. Yavari, M. Anary-Abbasinejad and A. Alizadeh, *Monatsh. Chem.,* 2002, **133**, 1331.